Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/51 -
Telegram Group & Telegram Channel
Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/51
Create:
Last Update:

Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/51

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Knowledge Accumulator from pl


Telegram Knowledge Accumulator
FROM USA